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Weak signal enhancement by nonlinear resonance
control in a forced nano-electromechanical
resonator
Avishek Chowdhury 1, Marcel G. Clerc2, Sylvain Barbay 1, Isabelle Robert-Philip3 & Remy Braive 1,4✉

Driven non-linear resonators can display sharp resonances or even multistable behaviours

amenable to induce strong enhancements of weak signals. Such enhancements can make use

of the phenomenon of vibrational resonance, whereby a weak low-frequency signal applied to

a bistable resonator can be amplified by driving the non-linear oscillator with another

appropriately-adjusted non-resonant high-frequency field. Here we demonstrate experi-

mentally and theoretically a significant resonant enhancement of a weak signal by use of a

vibrational force, yet in a monostable system consisting of a driven nano-electromechanical

nonlinear resonator. The oscillator is subjected to a strong quasi-resonant drive and to two

additional tones: a weak signal at lower frequency and a non-resonant driving at an inter-

mediate frequency. We analyse this phenomenon in terms of coherent nonlinear resonance

manipulation. Our results illustrate a general mechanism which might have applications in the

fields of microwave signal amplification or sensing for instance.
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In bistable systems, weak periodic signals can be amplified by
use of external driving. Such external driving can be some
noise of appropriate strength in the case of stochastic reso-

nance1, or a high-frequency harmonic signal of appropriate
amplitude in the case of vibrational resonance2. Both physical
phenomena share qualitative features including a resonant-like
behaviour, though the underlying mechanisms differ. Time
matching criterion dependent on the applied noise ampli-
tude required for stochastic resonance is replaced, in the case of
vibrational resonance, by an amplitude criterion equivalently to a
parametric amplification near the critical point. Both phenomena
have been reported in many different areas including electro-
nics3,4, optics5–8 or neurobiology9,10. In nanomechanics, the
bistable system is usually a simple nonlinear resonator and bist-
ability arises thanks to a quasi-resonant forcing.

This phenomenon can be fully understood thanks to the ubi-
quitous Duffing model which, beyond nanomechanics, can be used
for superconducting Josephson amplifier11, ionisation waves in
plasma12,13 to describe complex spatiotemporal behaviours such as
chimera states14. In the frame of the well-known Duffing model,
the oscillator features two equilibrium states of different amplitudes
and phases for the same values of parameters. In this regime,
substantial resonant enhancement of a weak and slowly modulated
signal through stochastic resonance can be achieved either by use
of amplitude15–17 or phase18 noise. When the external driving is no
more stochastic but rather a harmonic signal of high frequency, a
little bit of care has to be taken. The system is then subjected to
forces occurring on three different timescales: the one of the signal,
the one of the external drive and the one of the forcing. In the
standard picture of vibrational resonance, the signal must have
a much smaller frequency than the one of the external drive.
We here show an enhancement by a factor up to 20 of a weak
modulated signal thanks to vibrational resonance. Moreover, the
occurence of vibrational resonance in a forced system requires the
external driving frequency not only to be higher than the signal
frequency but also to be lower than the forcing frequency. Most
importantly, we show in that case that the high-frequency driving
amplitude renormalises the forced nonlinear resonator response
through the manipulation of the nonlinear resonance. We argue
that this effect could be used besides the one we are presenting
here, as a general mechanism for nonlinear resonance manipula-
tion. Beyond these fundamental aspects, potential applications
encompass various fields such as telecommunications, where the

data are encoded on a low-frequency modulation applied to a high-
frequency carrier, or, more prospectively, microwave signals pro-
cessing and sensing such as accelerometers featuring enhanced
sensitivities via optomechanically driven signal amplification19 or
for torque magnetometry20. Bichromatic signals are in addition
pervasive in many other fields including brain-inspired architecture
mimicking neural networks21 where bursting neurons may
exhibit two widely different time scales. Finally, enhancement
of weak signal by vibrational resonance might be valuable for
binary logic gate based on phase transition for reprogrammable
logic operation22,23 as well as for memory operation24, physical
simulators25,26 and more prospective application as quantum
computing27.

Results
Nonlinear driving of the nano-electromechanical resonator. In
our experiments, the resonator consists of a non-linear nano-
electromechanical oscillator formed by a thin micron-scale InP
suspended membrane (see Fig. 1a). The membrane’s out-of-plane
motion is induced by applying an AC voltage V(t) on integrated
metallic interdigitated electrodes placed underneath the mem-
brane at a sub-micron distance (see Fig. 1a; see Chowdhury
et al.28 and Methods for more details). It is placed in a low-
pressure chamber (10−4 mbar) in order to reduce mechanical
damping. The out-of-plane motion of the membrane is probed
optically (see Fig. 1b) thanks to a Michelson interferometer whose
one end mirror is formed by the oscillating membrane (see
Fig. 1a). The membrane mechanical fundamental mode of
oscillation lies at 2.82 MHz in the linear regime with a mechanical
quality factor of QM ~ 103.

The AC forcing voltage lies in the MHz regime and writes:

VðtÞ ¼ V0cos½2πνf t� ð1Þ
Here V0 is the amplitude of the applied voltage while νf denotes
the frequency of the quasi-resonant forcing. When sweeping
up and down the frequency νf in the vicinity of the fundamental
mode frequency, asymmetry in the mechanical response
spectrum appears for a sufficiently high driving amplitude V0 >
5.5V (see Fig. 1b). Hysteresis behaviour becomes prominent and
two stable points, represented by the low and the high amplitude
values of the mechanical motion, co-exist. The evolution of the
bistable region width as a function of V0 is shown in Fig. 1b Right.
The closing of this bistable region for increasing V0 cannot be
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Fig. 1 Nonlinear characterization of the nano-electromechanical resonator. a Schematic of the experimental set-up used for the actuation and detection
of the mechanical motion of the membrane (PhC photonic crystal, IDE interdigitated electrodes, LO local oscillator, BS beamsplitter, PD photodiode). Inset:
scanning electron microscopic image of the resonator consisting of a suspended InP membrane with a thickness of 260 nm and a surface of 20 × 10 μm2

and integrating gold interdigitated electrodes underneath at a 400-nm distance. b Amplitude of the forced mechanical fundamental mode as a function of
the forcing frequency νf in a sweep up (blue dots) and sweep down (red dots) experiment for V0= 9V. A theoretical fitting of the forced amplitude
response curve (sweep up) is shown (black line). The vertical dashed line lies at a frequency of 2.825MHz. c Amplitude of the forced mechanical
fundamental mode as a function of the amplitude of the applied voltage V0 for a forcing frequency fixed at νf= 2.825MHz. The vertical dashed line lies at a
voltage amplitude of 9V.
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observed due to limited voltage handled at the electrodes
terminals. In the following, V0 will be set to 9V in order to be
deeply in the bistable regime, and the forcing frequency is set at
νf= 2.825MHz, close to the middle of the hysteresis region, in
order to get symmetrical potentials18.

Externally induced dynamics in the time domain. Jumps
between the two stable states of oscillation can be induced by
slowly modulating the forcing amplitude. This scenario can be
implemented by applying to the electrodes a voltage in the form
of:

VðtÞ ¼ V0ð1þ γ cosð2πνmtÞÞ � cos½2πνf t� ð2Þ
where γ and νm denote respectively the modulation index and the
frequency of the amplitude modulated signal. Yet, a sufficiently
high modulation amplitude is needed to drive the system in

order to overcome the barrier height and to induce inter-well
motion following the applied modulation. In the case of a weak
amplitude modulated signal (as in our experiments with γ set at
0.1), the system is solely subjected to intra-well modulated
motion as can be seen in Fig. 2 top for the resonator being
initially prepared in its upper state. Amplification of the weak
modulated signal following jumps of the system between the two
states can however still be induced in that case by adding an
external driving with a frequency that is much higher than the
frequency of the weak modulation, but still lower than the for-
cing frequency.

In this scenario reproduced in our experiment, the external
drive takes the form of an additive amplitude modulation voltage
of amplitude VHF≡ δ ∗ V0 and frequency νHF. The criteria for
enabling the onset of vibrational resonance as predicted by theory
(see section theoretical analysis), requires strong frequency

VHF = 7 V VHF = 7 V

VHF = 6.4 VVHF = 6.4 V

VHF = 5.7 VVHF = 5.7 V

VHF = 5 VVHF = 5 V
0.16a b

0.14

0.12

0.10

0.08

0.06

0.04

0.02

A
m

pl
itu

de
 (

V
)

Time (s)

D
is

cr
et

e 
fo

ur
ie

r 
tr

an
sf

or
m

0.02

Frequency (Hz)
0 10 20 30 40 50 60 70

0.01

0.00

0.01

0.00

0.01

0.00

0.01

0.00
80

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.14

0.12

0.10

0.08

0.06

0.04

0.02

Fig. 2 Time responses and Discret Fourier Transform as function of high-frequency modulation. a Time series of the mechanical mode amplitude for a
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inequalities: νm≪ νHF≪ νf. The total applied voltage then writes:

VðtÞ ¼ V0 1þ γ cosð2πνmtÞ þ δ cosð2πνHFtÞ½ � cos 2πνf tð Þ ð3Þ

Eq. (3) describes the total applied signal required to achieve
amplification of the weak signal at νm. The signals at νf and νHF
can be externally controlled and triggered in order to respectively
probe and enhance amplification of the weak signal which needs
to be detected. Figure 2 shows time series of the mechanical
motion amplitude for νm= 30 Hz and increasing amplitudes of
the amplitude modulation at high frequency νHF= 200 kHz >
6500 ⋅ νm. The system starts in its upper state (high amplitude
state) where the small signal modulation is visible as a small intra-
well motion. As the amplitude of the external driving increases,
switching events between the two stable states become more
prevalent. At first, occasional inter-well transitions occur, weakly
locked to the modulation signal. For VHF= 6.4V, the system
response gets completely synchronised with the applied weak and
low-frequency modulation. Further increase of the additional
external drive amplitude worsens the synchronisation and the
system drops into its lower amplitude state, where a small intra-
well modulation is visible. There is thus an optimal amplitude of
the external drive which maximises the response amplitude.
When the system is modulated close to the hysteresis turning
points, it is more sensitive to noise induced fluctuations which
are inherent in the experimental system, and this results in the
observed aperiodic switchings in the weakly locked regions
(cf. Fig. 2).

Gain factor. The gain or amplification factor can be inferred by
quantifying the achieved spectral power amplification. For every
time traces recorded on a time scale of 600 s, Discrete Fourier
Transform (DFT) are performed. The resulting DFT spectra are
presented in Fig. 2. They feature peaks, the most prominent being
at the modulation frequency νm. The achieved gain M is then
given by the ratio between the strength of the peak in the DFT
spectrum at νm for a given amplitude of the external driving and
its strength without external driving (VHF= 0V). The induced
gain factor is presented in Fig. 3. The gain factor features a
resonant-like behaviour: the gain factor first rapidly rises with the
strength of the external driving, reaches a maximum for VHF=
6.4V and then drops. The maximum achieved gain factor is M=
20. Experimental noise modifies either the amplitude or the
bistability region of the response. The probe at the frequency of
the quasi-resonant forcing νf being fixed, this noise lead to fluc-
tuations visible in the gain.

Vibrational resonance is governed by an amplitude condition.
It occurs close to the transition from bistability to monostability,
during which the effective potential of the slow variable evolves
from a rapidly oscillating double well to a single well with a
parametric dependence on the high-frequency signal amplitude
and frequency29. As such, this phenomenon has some features in
common with parametric amplification near the critical point.

Theoretical analysis. To figure out the origin of this resonant
response, we introduce a simplified theoretical model and com-
pare its results to our experimental findings. The original treat-
ment of vibrational resonance in refs. 2,30 considers the motion of
a nonlinear oscillator in a bistable potential, subject to a low-
frequency signal and a high-frequency drive. Theoretical studies
so far have mostly concentrated on studying the impact of the
potential shape on the resonance29,31,32, or the response to multi-
frequency signals33. Interestingly, it was also noted in Gitter-
man30 that one particularly important aspect of vibrational
resonance was the ability to change the stability of some equili-
bria, or to have control over the shift of the resonance frequency.
Our system only becomes a nonlinear oscillator if it is resonantly
driven. Conversely, it cannot show a bistable response per se,
whatever the sign of the stiffness parameter α. However, with a
quasi-resonant harmonic forcing, the nonlinear oscillator can
become bistable. It is then interesting to examine in more details
if an additional “high” frequency forcing can induce a resonance
on a small amplitude signal.

The nanoelectromechanical system can be described in a good
approximation as a forced nonlinear (cubic) Duffing oscillator18.
Its dynamics can be modelled, in the limit of the small injection
and the dissipation of energy by

€x þ η _x þ ω2
0x þ αx3 ¼ F 1þ γ cos ωmtð Þ þ δ cosðΩtÞ½ � cos ωf tð Þ;

ð4Þ

where x(t) accounts for the out-of-plane displacement of the
membrane, η is the effective damping, ω0/2π is the natural
oscillation frequency of the membrane, α is the nonlinear stiffness
coefficient, F is the amplitude of the modulated forcing with
frequency ωf/2π≡ (ω0+Δ)/2π, introducing the small detuning
from resonance Δ. The high-frequency amplitude modulation has
an amplitude Fδ and a frequency Ω/2π= νHF. The oscillation
amplitude of the oscillator is the result of the beating of two
frequencies: one fast at Ω and one slow at ωm. The parameters γ
and δ characterise the amplitude of the beating. By considering the
following separation of timescales for the forcing frequencies
ωm≪Ω≪ ω0, an amplitude equation for the time-averaged
dynamics can be derived (see Methods). We start by deriving
the equation for the amplitude of the forced nonlinear oscillator
close to resonance (ωf ~ ω0) by looking for a solution in the form
xðtÞ ¼ CðtÞeiðω0þΔÞt þ cc (where cc accounts for the complex
conjugate term):

∂tC ¼� η

2
C � iΔC þ i

3α
2ω0

jCj2C

� i
F
4ω0

1þ γ cos ωmtð Þ þ δ cosðΩtÞð Þ;
ð5Þ

The strong timescale separation of the modulation frequencies
motivates the introduction of a time-averaged variable A over the
short period 2π/Ω34 such that

AðτÞ � Ω

2π

Z τþ2π=Ω

τ
CðtÞdt:
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Fig. 3 Amplification by vibrational resonance. Gain factor M with
associated error bars as a function of the amplitude of the external driving.
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The amplitude equation for the averaged response writes

∂τA ¼� η

2
A� i Δ� 3αF2δ2

16

� �
A

þ i
3α
2
jAj2A� i

F
4

1þ γ cos ωmtð Þð Þ
ð6Þ

where we have introduced rescaled quantities: F
ω0

! F, δ
Ω ! δ and

α
ω0

! α.
The averaged equation satisfies an amplitude equation with a

renormalised detuning Δ− 3αF2δ2/16 which depends on the
high-frequency driving amplitude. The most important aspect to
note here is that the non-resonant and “high” frequency driving
can modify the resonance behaviour of a nonlinear system. To
study how the intermediate frequency Ω modifies the resonance
region, we consider the polar representation A= Reiϕ/2 with γ=
0, and solve for the steady state _R ¼ _ϕ ¼ 0. We get the
characteristic equation

η2

4
R2 þ Δ� 3αF2δ2

16

� �
R� 3

8
αR3

� �2
¼ F2

4
ð7Þ

Note that in the limit of zero high-frequency amplitude modulation
(δ→ 0) we recover the deterministic forced Duffing resonator
model. At this point, we highlight that the timescale separation
hypothesis, ωm≪Ω≪ω0, is central to obtain this result. Indeed, if
we suppose ωm≪ω0≪Ω, i.e. a very high-frequency driving and
average Eq. (4) before deriving the amplitude equation, then we
cannot show evidence for vibrational resonance.

We numerically investigate the amplitude equation given
by Eq. (7) for the parameters σ= 0.0016, η= 0.001, α= 0.4 and

ωm= 2π/200,000. These parameters values are chosen to match the
experimental ones. By fitting the nonlinear resonance curve (see
Fig. 1b) we get the mechanical quality factor QM= η−1 and the
nonlinear spring term α18. The signal modulation frequency is
chosen to be much larger than mechanical quality factor to ensure
almost adiabatic evolution. Figure 4 shows the steady-state response
curves (inferred from Eq. (7)) versus the driving amplitude for
different high-frequency amplitude modulation. Without any high-
frequency drive (δ= 0), the system displays a large hysteretic
response (see Fig. 4a). A slow modulation of amplitude less than
the hysteresis width would not produce any jump between the
branches, hence would not produce any strong amplification of the
signal at ωm. The addition of the high-frequency drive introduces an
extra detuning which deforms the nonlinear response: in Fig. 4a, we
observe that the centre of the hysteresis loop is shifted towards
lower driving forces F, and that the width of the hysteresis shrinks
as well. Since the signal modulation amplitude scales as Fγ, this
means that a smaller slow modulation amplitude γ will be necessary
to overcome the hysteresis width and produce large jumps between
the lower and upper branch. This is the essence of the vibrational
resonance phenomenon. In order to check this, we integrated
numerically Eq. (7) with a slow amplitude signal at ωm. The results
are shown on the time traces plotted in Fig. 4a, c. In the absence of
high-frequency amplitude modulation (δ= 0) the response is quasi
linear since the system cannot jump between the lower and higher
branches for the chosen modulation amplitude. The amplification
factor is close to one if the system resides on the lower branch
(same as the linear regime), or can be even smaller if it resides in the
upper branch (de-amplification). When the driving δ is increased,
the system is tuned into resonance and undergoes synchronous
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jumps with the signal driving frequency between the lower and
upper branches (Fig. 4c). This corresponds to a large signal
amplification, provided the signal amplitude is large enough, i.e.
larger than the hysteresis width for the chosen parameters.

The amplification is shown in Fig. 5, rescaled to the response with
zero high-frequency drive in the quasi linear case, i.e., on the lower
branch. We plot both the amplitude ratio Ma (ratio of the response
amplitude with and without high-frequency drive) and the power-
spectral density (PSD) ratio M. Ma displays a sharp transition
corresponding to the tuning of the system into the bistable region.
When the high-frequency drive is not large enough, the system stays
in the lower branch and the response is quasi-linear, leading to an
amplification factor close to 1. When the bistable regime is reached,
a large amplitude amplification is obtained. And for still higher δ the
system stays in the upper branch where the response is sublinear,
thus leading to de-amplification as expected. The same thing occurs
in the PSD, except that the transition is less marked because the
response of the system is highly nonlinear, hence the spectral energy
is spread among the different harmonics. Note that we reach here,
with the chosen parameters, a PSD amplification of the same order
of magnitude as in the experiment. However, much larger
amplification factors can be reached for other slightly different
parameters, as illustrated in Fig. 5 whereM ~ 140 is obtained for still

smaller linear driving signal not accessible in experiments. This
important point is illustrated in Fig. 4b, d. If the signal strength is
too small to overcome the hysteresis width, it is possible to increase
the high-frequency drive to tune it into the resonance. As shown in
Fig. 4b for δ= 1000, a higher high-frequency modulation shifts the
hysteresis curve further to the left, i.e., to lower overall forcing, but
most importantly reduces the width of the hysteresis while not
changing the hysteresis height too much. This makes it possible to
amplify a much weaker signal by the vibrational resonance
phenomenon. Note also that the amplification factor is even much
larger in that case because of the already discussed different effect on
the width and on the height of the hysteresis. This shows that it is
necessary to tune both the high-frequency drive δ and the
modulation strength F to amplify optimally a signal of a given
amplitude.

Discussion
The previous analyses clearly indicate the primordial role of the
high-frequency amplitude modulation and of the proper time-
scale separation in such vibrational resonance phenomenon. The
former allows to control the nonlinear resonance in order to
amplify weak signals. The latter, while being compulsory for
technical reasons in the theoretical analysis, could potentially be
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relaxed in experiments. The exact value of the external drive
frequency Ω is not critical at all, as long as it satisfies the timescale
separation condition with ωm≪ ωf, Ω and if it remains non-
resonant. Signal amplification results from the tuning into reso-
nance of the non-linear response of the system. Amplification
could occur also in the case of a non multivalued response, as
long as the slope of the tuned response is large enough to ensure
appropriate amplification. In principle, for any given signal
amplitude, it is always possible to adjust both the forcing strength
F and the high-frequency modulation strength δ for vibrational
resonance to occur. However, the maximum gain achievable will
be a complicated function of all the system parameters. It will
occur at the nascent bistability, i.e. when the hysteresis curve has
an infinite tangent. Indeed, in this case, any small nonzero
amplitude signal will be maximally amplified until saturation on
the lower or upper branches. Ultimately, maximum gain
achievable is limited by signal noise or noise in the system.
Concerning the signal amplification frequency, its maximum is
limited by the frequency response of the oscillator which is given
by the damping rate (~1 kHz here). In order to push it further it is
necessary to either decrease the mechanical quality factor of the
nanomembrane or increase the resonant frequency with a similar
quality factor.

By comparing the amplitude magnification curves in Figs. 3
and 5 we note a slight softening effect on the experimental gain
curve whereas the theoretical one shows a sharp transition to high
gain when the signal modulation is larger than the hysteresis
curve turning points. This difference can be attributed to residual
noise in the experiment which can modify the behaviour of the
system close to the turning points of the nonlinear response.

At last, as observed in previous optical implementations of
vibrational resonance8,35 in non-parametrically forced bistable
systems, the gain obtained seems higher than to the one observed
in stochastic resonance for the same system. Even though
vibrational resonance and stochastic resonance are based on
different physical principles, this observation is verified in our
system from a raw quantitative comparison with the stochastic
resonance amplification18.

In conclusion, we established and analysed the conditions for
using vibrational resonance in order to enhance weak signals in a
forced nonlinear oscillator, even if the system is initially mono-
stable. The physical phenomenon is based on the resonance
manipulation, thanks to a non-resonant, high-frequency ampli-
tude-modulation drive obeying a timescale separation condition.
We derived a model to describe vibrational resonance in a
monostable, forced nonlinear oscillator which shows good agree-
ment with our experimental results obtained on a forced nano-
electromechanical membrane. This deterministic amplification
method gives rise to high amplification factors, especially when
compared to stochastic resonance36. As such, these results pave
the way towards the design of novel architectures based on non-
linear dynamic resonances for weak signal amplification, as cur-
rently done by quantum-limited Josephson parametric ampli-
fiers37 or, in the optical domain, by phase-sensitive amplifiers in
the optical domain38 to name a few. In a more general framework,
it may open new avenues for the manipulation of non-linear
resonances with the addition of a non-resonant driving field.

Methods
Fabrication of the InP resonator membrane. The fabrication of the whole plat-
form is based on a 3D heterogeneous integration process involving mainly four
steps. First, a 400-nm-thick SiO2 layer is deposited on the 260-nm-thick InP
membrane, which is grown along with a 500-nm-thick InGaAs etch-stop layer on
top of an InP (100) substrate by metal organic vapour phase epitaxy. Simulta-
neously, interdigitated electrodes (IDTs) arrays, displaying a finger period of 2 μm,
finger length of 10 μm and electrode width of 500 nm, are deposited on a Si

substrate. The patterning process involves an electronic lithography, deposition of a
200-nm-thick gold layer and standard lift-off. The Si chip is then spin-coated with
a 200-nm-thick DiVinylSiloxane-BenzoCycloButene (DVS-BCB) layer, thereby
planarising the Si substrate. In the second step, the InP wafer is bonded on the Si
substrate at high-temperature (300 °C) by positioning the SiO2 layer atop the DVS-
BCB layer and by using a vacuum wafer bonding technique39. The InP substrate
and InGaAs etch-stop layer are then removed by chemical etching, leaving the
residual 260-nm-thick InP membrane on the DVS-BCB-SiO2 layer. In the third
step, the InP membrane is patterned by standard e-beam lithography and dry-
etching, to form a two-dimensional square-lattice photonic crystal of periodicity
532 nm, hole radius 181 nm and whole surface of 10 × 20 μm2. It is clamped by four
tethers of 2 μm length and 1 μm width, in order to reduce clamping losses. The
alignment of the photonic crystal mirror with respect to the IDT’s arrays, is per-
formed with an accuracy better than 20 nm, by making use of alignment marks
deposited beforehand on the Si substrate. Last, the photonic crystal membranes are
released by under-etching the underlying 400-nm-thick SiO2 layer, followed by a
critical point drying step. The lateral InP suspension pads act as protective
structures for the SiO2 layer beneath them, leaving them anchored to the substrate.

Measurement of the out-of-plane motion. A He–Ne laser with wavelength of
633 nm is sent to the membrane. The reflectivity of the membrane is enhanced up
to 50% by piercing a square lattice photonic crystal in it40. The laser is focused on
the membrane via an objective with a NA of 0.4. The light reflected by the
membrane is brought to interference with a strong local oscillator. A balanced
homodyne detector locked on the drive frequency at the interferometer output is
then used to decipher the amplitude and phase of the mechanical motion.

Actuation of the mechanical oscillator. The membrane is driven via the elec-
trostatic force induced by the electrodes placed underneath. These electrodes are
connected to an external signal generator which can go up to 50MHz and is
synchronised with a lock-in amplifier (HF2LI) which demodulates the detected
signal at the actuation frequency. For vibrational resonance, the weak (νm) modu-
lated signal is generated by an another signal generator (Model Agilent 33522A) and
combined with the additive (νHF) signal in the HF2LI. This signal is then modulated
at the frequency of the quasi-resonant forcing (νf) and sent to the electrodes. The
electrical signal obtained from the photodiodes (Thorlabs APD120A2) is time-
recorded with the oscilloscope function of the HF2LI. The sampling frequency is
900 Hz, a much higher frequency than the one of the amplified signal.

Derivation of the theoretical model. Let us consider the timescale separation
ωm≪Ω≪ ω0 and the resonance condition ωf ~ ω0. We first look for a solution to
Eq. (4) using the ansatz xðtÞ ¼ CðtÞeiðω0þΔÞt þ cc (where cc accounts for the
complex conjugate term). After straightforward algebra, one gets an amplitude
equation for the slow envelope C(t), assuming that ∂ttC � ω2

0C and ∂tC≪ ω0C:

∂tC ¼ � η

2
C � iΔC þ i

3α
2ω0

jCj2C � i
F
4ω0

1þ γ cos ωmtð Þ þ δ cosðΩtÞð Þ; ð8Þ

The amplitude equation (Eq. (8)) corresponds to the one of a forced oscillator
with temporally modulated amplitude. Since we have a strong timescale separation
of the modulation frequencies, ωm≪Ω, one can consider the averaged variable on
the short period 2π/Ω

AðτÞ � Ω

2π

Z τþ2π=Ω

τ
CðtÞdt

and homogenise the scales41 by writing

CðtÞ ¼ AðτÞ � δF
4ω0Ω

eiΩt ð9Þ

Considering that the envelope A(τ) is a slow variable (∂τA≪ ωmA), using the
ansatz (9) in Eq. (8) and averaging over the period 2π/Ω, we get the amplitude
equation for the averaged response

∂τA ¼ � η

2
A� i Δ� 3αF2δ2

16ω3
0Ω

2

� �
Aþ i

3α
2ω0

jAj2A� i
F
4ω0

1þ γ cos ωmtð Þð Þ ð10Þ

Introducing the notation F0 ¼ F
ω0
, δ0 ¼ δ

Ω and α0 ¼ α
ω0

and omitting 0, the
equation reads

∂τA ¼ � η

2
A� i Δ� 3αF2δ2

16

� �
Aþ i

3α
2
jAj2A� i

F
4

1þ γ cos ωmtð Þð Þ ð11Þ

We further introduce a Madelung transform A= Reiϕ/2 and γ= 0, and get

_R ¼ � η

2
R� F

2
sinðϕÞ ð12Þ

R _ϕ ¼ � Δ� 3αF2δ2

16

� �
Rþ 3

8
αR3 � F

2
cosðϕÞ ð13Þ
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At steady state, _R ¼ _ϕ ¼ 0 and we finally get the characteristic equation

η2

4
R2 þ Δ� 3αF2δ2

16

� �
R� 3

8
αR3

� �2
¼ F2

4
ð14Þ

High-frequency modulated forcing (Ω≫ω0). Let us consider the nano-
electromechanical system described by model Eq. (4) in the limit Ω≫ ω0 ~ ωf. Due
to the separation of temporal scales, one can analogously separate the temporal
scales by means of the following change of variable

x ¼ zðTÞ � Fδ cosðωfTÞ
Ω2 cosðΩtÞ ð15Þ

where the average over the rapid temporal variable reads

hxi ¼ Ω

2π

Z Tþ2π=Ω

T
xðtÞdt ¼ zðTÞ: ð16Þ

Introducing the ansatz (15) in Eq. (4) and taking the average over the rapid
temporal variable, one gets after straightforward calculations,

€z þ η _z þ ðω2
o þ

3F2δ2

4Ω4 Þz þ αz3

¼ � 3F2δ2

4Ω4 z cosð2ωf tÞ þ F 1þ γ cos ωmtð Þ½ � cos ωf tð Þ:
ð17Þ

Therefore, within this limit, the resonator natural frequency is modified to

~ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
o þ

3F2δ2

4Ω4

s
: ð18Þ

In addition, the system has an extra parametric forcing term. Considering the
forcing frequency close to the new resonant frequency ωf ¼ ~ωo þ ~Δ and looking
for a solution of the form z ¼ ceiωf t þ c:c: in Eq. (17), we obtain the amplitude
equation for C

∂tC ¼;� η

2
C � i~ΔC þ i

3α
2~ω0

jCj2C � i
F
4~ω0

1þ γ cos ωmtð Þð Þ � 3F2δ2

16~ωoΩ
4
�C; ð19Þ

By comparing Eq. (19) with Eq. (6), we notice that the terms are similar except for
the complex conjugate term which is a signature of the additional parametric forcing.
Therefore, we can conclude that the resonance of the system can be manipulated as in
the previous case with the high-frequency forcing amplitude. However, the presence
of a simultaneous parametric resonance does not allow to draw a simple conclusion
on the amplification of the weak signal in that case, and we expect the parametric
resonance to modify substantially the general physical picture.

Manipulation of the resonance. The characteristic equation Eq. (14) can be
rearranged to yield a third order polynomial equation in z= R2 such that

pðzÞ ¼ 9α2z3

64
þ 3
64

αz2 3αδ2F2 � 16Δ
� �þ z

256
3αδ2F2 � 16Δ
� �2 þ 64η2

	 

� F2

4
We look for extrema of the characteristic curve p(z)= 0 in the plane (z, F) to

compute the hysteresis width which yields two roots z±

z ± ¼
32αΔ� 6α2δ2F2 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 3αδ2F2 � 16Δ

� �2 � 192η2
	 
r
18α2

The hysteresis width can now be obtained by solving for F± in p(z±)= 0. One
obtains the implicit formula

�27α3δ6F6
± ± 9α2δ4F4

± ± 48Δþ Δ±ð Þ
� 96αF2

± 6 δ2 4Δ2 þ 3η2
� �þ 9

� �
± δ2ΔΔ±

� �
± 64 ±16 4Δ3 þ 9Δη2

� �þ 4Δ2 � 3η2
� �

Δ±

� � ¼ 0

with Δ± ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αδ2F2

± � 16Δ
� �2 � 192η2

q
. An analytic expression for the hysteresis

width ΔF= F+− F− or the hysteresis centre Fc ¼ 1
2 Fþ þ F�
� �

cannot be
expressed easily. However, for the set of parameters used in Fig. 4 we can compute
both ΔF and Fc. With these parameters, the hysteresis width can be almost closed
for a large high-frequency amplitude modulation δ, whereas the hysteresis central
frequency can be tuned in a large range, the same order of size as the
original width.

Data availability
All data and figures that support the findings of this study are available in Zenodo with
the identifier https://doi.org/10.5281/zenodo.3595858.
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